GCSE Scheme of Work

The new GCSE will consist of 3 exam papers, each $11 / 2$ hours long. There will be one Non-Calculator Paper and two Calculator Papers

Higher Tier

The higher tier covers all grades from 1-9. It specifically tests grades 4-9, but assumes knowledge of grades 1-3.
Work at grades $4-5$ is likely to be tested as straight questions. Work at grade 6-9 is likely to have a bigger emphasis on problem solving

Foundation Tier

The foundation tier covers all grades from 1-5
Work at grades 4-5 is likely to be tested as straight questions. Work at grades $1-3$ is likely to have a bigger emphasis on problem solving

Assessment Objectives

| Criteria | | | |
| :--- | :--- | :--- | :--- | :--- |
| Assessment
 Objective | - Accurately recall facts, terminology and definitions (10\%) | Higher Tier | Foundation |
| Tier | | | |

In the pre-2015 GCSE whole questions were assigned as either AO1, AO2 or AO3. In the new GCSE marks are assigned individually to each assessment objective, therefore a single question may have marks allocated to all three assessment objectives

Note: QWC (${ }^{*}$) will not be flagged up on questions but will be tested through AO2 across the whole paper

Higher Tier

- Product rule for counting
- Estimate powers and roots of any given positive number
- Expanding three or more linear brackets
- Composite and inverse functions
- Gradients and areas under curves
- Equations of tangents to a circle at a given point
- Find solutions to equations using iteration
- Work with iterative processes
- Solve quadratic inequalities
- Solve linear inequalities in two variables using set notation and graphs
- Nth term of a quadratic sequence
- Proof of circle theorems
- Geometric sequences with common ratios that are surds
- Identify turning points of quadratics by completing the square

Foundation Tier

- Calculate with and interpret standard form
- Use inequality symbols to specify errors due to rounding or truncating
- Simplify and manipulate algebraic expressions involving surds
- Multiple two brackets
- Factorise and solve quadratics
- Use $y=m x+c$ to identify parallel lines
- Identify gradients and y-intercepts
- Find equations of lines from points and gradients
- Recognise, sketch and interpret graphs of linear, quadratic, cubic and the reciprocal function
- Use graphs to solve problems involving acceleration
- Linear simultaneous equations
- Recognise Fibonacci type, quadratic and geometric sequences
- Calculate compound measures including pressure
- Understand direct and inverse proportion
- Reverse percentages
- Compound growth and decay problems
- Similarity
- Congruence of triangles
- Enlargement with fractional scale factors
- Volume and surface area of spheres, pyramids, cones and composite solids
- Area and perimeter of composite shapes involving circles
- Arc length and area of sectors
- Calculate with exact multiple of π
- Trigonometry in right angled triangles
- Exact values for sin, cos and tan
- Add, subtract and multiply with vectors
- Tree diagrams
- Basic sampling
- Venn diagrams
- Consider outliers when calculating the range

There will be no formula page on the exam paper.

Formula to be Learnt These will not be given in the exam paper		Formula given on the Exam Paper Will be given in question
The Quadratic Formula $a x^{2}+b x+c=0$ where $a \neq 0$ $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	Perimeter, Area, Surface Area, Volume Area of Trapezium $=\frac{1}{2}(a+b) h$ Volume of Prism $=$ Area of cross-section x length	Perimeter, Area, Surface Area, Volume Curved Surface Area of Cone $=\pi r l$ Volume of Cone $=\frac{1}{3} \pi r^{2} h$
Circles Circumference $=2 \pi r=\pi d$ Area $=\pi r^{2}$	Probability $\begin{aligned} & P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\ & P(A \text { and } B)=P(A \text { given } B) P(B) \end{aligned}$	Surface Area of a Sphere $=4 \pi r^{2}$ Volume of Sphere $=\frac{4}{3} \pi r^{3}$
Right Angled Triangles Pythagoras Theorem $a^{2}+b^{2}=c^{2}$ Trigonometry $\operatorname{Sin} \mathrm{A}=\frac{0}{h}$ $\operatorname{Cos} \mathrm{A}=\frac{a}{h}$ $\operatorname{Tan} \mathrm{A}=\frac{0}{a}$	Non-Right Angled Triangles Sine Rule $\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}$ Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$ Area $=\frac{1}{2} \mathrm{abSinC}$	Kinematics a is constant acceleration, u is initial velocity, v is final velocity, s is displacement t is time taken $\begin{aligned} & v=u+a t \\ & s=u t+1 / 2 a t^{2} \\ & v^{2}=u^{2}+2 a s \end{aligned}$

Overview Page

Topic Number	Topic	Notes	Completed
1	Integers and Place Value	Topics 1-4 to be taught in Year 9 Summer term 2 when they start the KS4 Scheme of Work	
2	Angles and Bearings		
3	Coordinates and Linear Graphs		
4	Number Properties		
5	Powers, Roots and Surds		
6	Expressions and Brackets		
7	Statistics: Drawing Graphs		
8	Decimals		
9	2D Shapes		
10	Fractions		
11	Solving Equations	Yellow = Both higher and Foundation Green = Higher Red $=$ Foundation	
12	Ratio and Proportion		
13	Triangles		
14	Solving Quadratic Equations		
15	Statistics: Averages		
16	Sequences	Blue $=$ if time is restricted in the lead up to mocks, these topics are to be left, with a focus on the other highlighted topics. The blue topics can then be picked up after the Year 11 mocks.	
17	Substitution and Formulae		
18	Percentages		
19	3D Shapes		
20	Fractions, Decimals, Percentages		
21	Construction		
22	Probability		
23	Measures		
24	Transformations		
25	Quadratic and Curved Graphs		
26	Inequalities		
27	Proof		

3		Coordinates and Linear Graphs	
F	$1-3$	Work with coordinates in all four quadrants Solve geometric problems on coordinate axes Plot graphs of linear equations ldentify gradients and y-intercepts from both graphs and equations Use distance tables and timetables	
F/H	$4-5$	Find midpoints between coordinates Use the form $y=m x+c$ co identify parallel lines Find the equation of a line from two points on the line, or from one point and a gradient Plot and interper linear graphs in the context of real life functions, e.g: speed, distance and time graphs Plot and use conversion graphs	
H	$6-7$	Use the form $y=m x+c$ to identify perpendicular lines Interpret gradients of and areas under linear graphs in real life contexts, including distance-time graphs, velocity-time graphs and in financial contexts	

AO2: Reasoning

AO3: Problem Solving

- Using a conversion graph to compare the price of an item in two different countries (Grades 4-5)
- Pupils need to be able to draw their own axis and decide upon suitable scaling (Grades 1-9)

5		Powers, Roots and Surds		
F	1-3	Understand and apply BODMAS (including with brackets, powers, roots and reciprocals) Use positive integer powers and associated real roots (square, cube and higher) Recognise powers of $2,3,4$ and 5 Know what a reciprocal is Writing using indices ($\left(. g\right.$: $\mathrm{a} \times \mathrm{a} \times \mathrm{a}=\mathrm{a}^{3}$) Know and apply the laws of indices: multiplying, dividing and powers of powers Convert between standard and ordinary form Calculate with standard form with and without a calculator		
F/H	4-5	Know how to use the power buttons on a calculator Calculate with BODMAS on a calculator Calculate with roots and integer indices Calculate negative indices		
	6-7	Calculate fractional indices		
H	8-9	Estimate powers and roots of any given positive number Simplify surds Add and subtract surds Rationalise denominators		
AO2: Reasoning - Prove that the square root of 45 lies between 6 and 7 (Grades 8-9)			AO3: Problem Solving - Carry out standard form calculations in real life contexts (e.g: using speed of light) (Grades 1-3)	

11		Solving Equations	
F	1-3	Use function machines Solve equations using flow charts Solve linear equations with the unknown on one side of the equation	
F/H	4-5	Solve linear equations with one unknown on both sides of the equation Solve linear simultaneous equations algebraically Solve linear simultaneous equations graphically Find approximate solutions to linear equations graphically	
H	6-7	Find approximate solutions to equations numerically using trial and improvement	
H	8-9	Find approximate solutions to equa	ing iteration
AO2: Reasoning			AO3: Problem Solving - Set up and solve linear equations from word or geometric problems and interpret the solution in context (Grades 4-5) - Set up and solve linear simultaneous equations from word or geometric problems and interpret the solution in context (Grades 6-7)

Solving Quadratic Equations

15		Statistics: Averages						
F	1-3	Calculate the mean, median, mode and range Compare data using the mean, median, mode and range Calculate the mean, median, mode and range from a frequency table						
F/H	4-5	Calculate the estimated mean, median and modal group from a grouped frequency table Consider outliers						
H	6-7	Interpret and construct cumulative frequency graphs Interpet and construct box plots Compare data using box plots Calculate quartiles and the interquartile range						
AO2: Reasoning - $12,13,14,15,16,17$. Susan states the median is 15 . She is wrong. Explain why. (Grades 1-3) - Justify the use of a particular average to support an argument. (Grades 4-5)			AO3: Problem Solving - Given the mean, median or mode of a set of data work out part of the original data set (Grades 1-3) - Given the mean, median and mode of a set of data, find the entire original set of data (Grades 1-3) - Given the size of a sample and a box plot, calculate the number of people represented in a given section of the box plot (Grades 8-9)					

AO2: Reasoning

- Justify whether a given number is in a particular sequence (Grade 1-3)

AO3: Problem Solving

- Given a sequence, what is the first term greater than 50 ? (Grades 1-3)
- Solve problems involving sequences from real life problems (e.g: a grain of rice on the first square of a chess board, 2 on the second etc, a person saves $£ 10$ in the first week, $£ 20$ in the next etc, what is the height of a tree which grows 6 m per year) (Grades 1-5)

17		Substitution and Formulae		
F	1-3	Substitute numerical values into expressions and formulae (including SUVAT equations) Understand and use standard mathematical formulae Rearrange formulae to change the subject using flowcharts		
F/H	4-5	Form formulae from word problems Rearrange simple formulae		
	6-7	Rearrange complex formulae, where the subject appears more than once		
H	8-9	Use function notation, $f(x), g(x), f^{-1}(x)$ Calculate inverse functions, $f^{-1}(x)$ Calculate composite functions $\mathrm{fg}(\mathrm{x})$		
AO2: Reasoning - Kate and John use the formula $y=8 n+4$, when $n=2$. Kate says $y=86$. John says $y=20$. Who is correct? (Grade 1-3)\quad AO3: Problem Solving				

18		Percentages	
F	1-3	Introduce the language of percentages Express one quantity as a percentage of another (both non-calculator and calculator methods) Finding percentages of amounts (both non-calculator and calculator methods) Calculate percentage increase and decrease Interpret fractions, decimals and percentages as operators in percentage change problems Calculate percentage change Calculate original quantities after a percentage change Calculate simple interest	
F/H	4-5	Calculate compound interest Solve compound percentage increase problems Solve compound percentages decrease problems	
H	6-7 $8-9$		
AO2: Reasoning			AO3: Problem Solving - Compare two quantities using percentages, for example the cost of two items with different percentage discounts (Grades 1-3) - Comparing bank accounts with different interest rates, for example simple versus compound (Grades 4-5) - Consecutive reductions, such as a sale price of 10% off the previous days price. If the item is $£ 90$ on Monday, what is its cost on Wednesday? (Grades 1-3)

22		Probability	
Use the probability scale List outcomes of events and combined events (e.g: listing possible combinations from a menu) Calculate basic theoretical probabilities Calculate missing probabilities for mutually exclusive events Complete two ways tables and calculate probabilities from them Calculate experimental probabilities Complete sample space diagrams and use them to calculate probabilities Sort data into venn diagrams Draw and use frequency trees (like a probability tree but with frequencies on the braches rather than probabilities)			
F/H	4-5	Use simple tree diagrams where all branches are the same Use more complex trees diagrams where branches represent different situations Use set notation for venn diagrams to describe a set of numbers or objects	
H	6-7	Construct venn diagrams to solve more complex probability problems Calculate probabilities using venn diagrams Carry out ' $\&$ ' and 'or' probability questions Calculate combinations and permutations	
	8-9	Calculate conditional probabilities including with the use of tree diagrams	
AO2: Reasoning			AO3: Problem Solving - Mutually exclusive events with probabilities given in algebra (e.g: probabilities of $x, 2 x, 3 x$ and $4 x$. Need to find x) (Grades 1 3)

24		Transformations			
F	1-3	Understand reflection symmetry Understand rotational symmetry Carry out and describe rotations on and off the coordinate axis Carry out and describe reflections on and off the coordinate axis Carry out and describe translations on and off the coordinate axis Describe translations as 2D vectors Recognise congruent shapes Draw tessellations			
F/H	4-5	Carry out enlargements with integer scale factors on and off the coordinate axis and with and without a centre of enlargement Carry out enlargements with fractional scale factors on and off the coordinate axis and with and without a centre of enlargement Use basic congruence criteria for triangles (SSS, SAS, ASA, RHS) Apply the concepts of congruence and similarity with regards to length in similar shapes Use diagrammatic and column representations of vectors Apply addition and subtraction of vectors and multiplication of vectors by a scalar			
H	6-7	Carry out enlargements with negative scale factors on the coordinate axis and with a centre of enlargement Describe the changes and invariance achieved by combinations of rotations, reflections and translations Apply ratios between areas and volumes in similar shapes problems			
AO2: Reasoning - Proving similarity or congruence between two shapes (Grades 4-5) - Use vectors to construct geometric arguments and proofs (Grades 8-9)			AO3: Problem Solving - Find the area of a parallelogram produced by given vectors (Grades 8-9)		

25		Quadratic and Curved Graphs			
F	1-3	Plot graphs of quadratic functions			
F/H	4-5	Identify roots, intercepts and turning points of quadratic functions from their graph Sketch linear, quadratic, cubic and reciprocal graphs			
	6-7	Recognise, sketch and interpret graphs of exponential functions Plot and interpret exponential graphs in real contexts Recognise and use the equations of the circle with centre at the origin Recognise, sketch and interpret graphs of trigonometric functions (sin, cos and tan) Sketch translations, reflections and stretches of given functions			
H	8-9	Calculate gradients of curved graphs Calculate or estimate the area under graphs Interpret gradients of and areas under curved graphs in the context of distance-time graphs, velocity-time graphs and in financial contexts Find the equations of a tangent to a circle at a given point Interpret the gradient at a point on a curve as the instantaneous rate of change; apply the concepts of average and instantaneous rates of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts			
AO2: Reasoning - Matching graphs to their functions (Grades 4-9) - Justify whether a straight line graph would pass through a circle draw on the coordinate grid (Grades 8-9)			AO3: Problem Solving - Pupils need to be able to draw their own axis and decide upon suitable scaling (Grades 1-9)		

AO2: Reasoning

AO3: Problem Solving

- Solve word problems leading to inequalities. (Grade 4-5)

