A-Level Chemistry

Teachers:

- Dr Dixon
- Mrs Hardaker
- Mrs Lenton

A required subject for applications to study Medicine, Dentistry and Veterinary Science at university.

Strong Maths skills required.

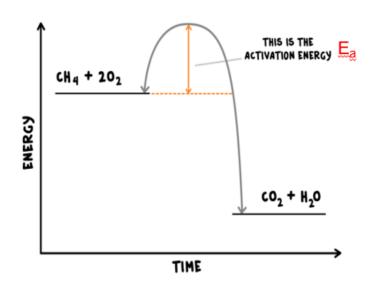
Lots of practical sessions and opportunities to complete CREST awards.

CHEMISTRY IS EVERYWHERE – lots of career opportunities.

Energetics Revision

Starter

- 1. Explain Enthalpy Change.
- 2. Draw and Energy profile diagram for the combustion of methane.
- 3. What is the most accurate way to measure 25cm³ of HCl(aq)
- 4. $q=mc\triangle T$ What are the units of q?
- 5. What are the units for $\triangle H$?

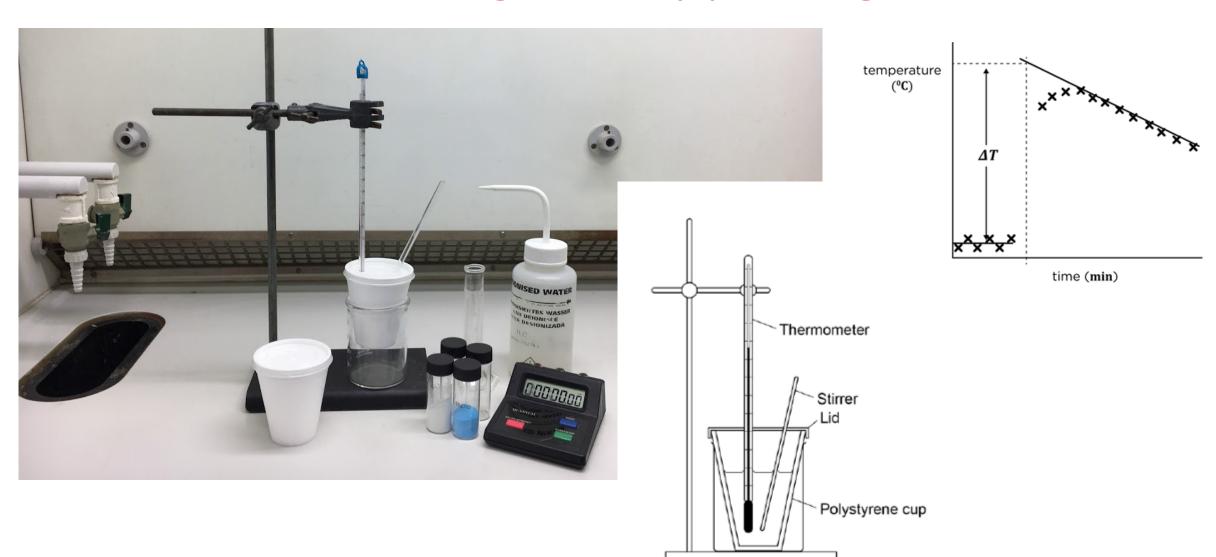

Energetics Revision

Starter

1. Explain Enthalpy Change.

The enthalpy change for a process is the heat energy exchanged with the surroundings at constant pressure.

- 2. Draw and Energy profile diagram for the combustion of methane.
- 3. What is the most accurate way to measure 25cm³ of HCl(aq)? Use a glass pipette or burette
- 4. $q=mc\Delta T$ What are the units of q? Joules (c is the specific heat capacity of water (4.18 JK⁻¹ g⁻¹). M is mass of solution in grams
- 5. What are the units for $\triangle H$? KJmol⁻¹



Task

Think about the question below and then make bullet point notes:

How could you measure the enthalpy change for the displacement reaction between copper sulfate(aq) and zinc(s)?

Hints for measuring enthalpy change

Video – Measuring Enthalpy Change Watch the video – any improvements?

Improvements

- Do you think it would be best to reweigh the weighing boat after zinc powder is added to the copper sulfate?
- Why would you do this?
- Would it help to have a more concentrated solution of copper sulfate?
- Why was the Zinc powdered?
- Why is an accurate mass of Zinc needed if it is in excess?

Improvements

- Do you think it would be best to reweigh the weighing boat after zinc powder is added to the copper sulfate? Yes
- Why would you do this? Some powder may have been left in the boat and must be accounted for.
- Would it help to have a more concentrated solution of copper sulfate? It
 would give a bigger temperature change and so could improve accuracy of
 results.
- Why was the Zinc powdered? Greater surface area, reacts more quickly.
- Why is an accurate mass of Zinc needed if it is in excess? So that you can calculate the number of moles added – needed to calculate enthalpy change.

Write a detailed method.

Write a detailed method that could be used to measure the enthalpy change for the reaction between 6g of zinc powder and 25cm³ of 1M copper sulfate solution.

Checkpoints - Measuring enthalpy change

- ➤ Measure out the solution into an insulated container, using a glass pipette (or burette).
- ➤ When you weigh a solid weigh the container, empty and then reweigh the container (just in case some solid is left on the container)

time (min)

- ➤ Measure the temperature of the solution every 60 seconds.
- >Keep the thermometer vertical with the bulb in the solution.
- ➤On the 4th minute, add the solid then continue to record Temp.
- ➤ Plot time (x-axis) vs Temperature (y-axis).
- \triangleright Extrapolate back to when you added the solid and find temperature change, \triangle T
- Use this and volume of solution to calculate q.
- Convert q to KJ (divide by 1000).
- Find number of moles of solid added.
- ➤ Calculate enthalpy change by dividing q (KJ) by number of moles of solid.
- >If the temperature increased it is exothermic so add a negative sign (and vice versa)

Example Exam Q - 2017 AS Paper 1

0 3

A student planned and carried out an experiment to determine the enthalpy of reaction when magnesium metal displaces zinc from aqueous zinc sulfate.

$$Mg(s) + Zn^{2+}(aq) \rightarrow Mg^{2+}(aq) + Zn(s)$$

The student used this method:

- A measuring cylinder was used to transfer 50 cm³ of a 1.00 mol dm⁻³ aqueous solution of zinc sulfate into a glass beaker.
- A thermometer was placed in the beaker.
- 2.08g of magnesium metal powder were added to the beaker.
- The mixture was stirred and the maximum temperature recorded.

The student recorded a starting temperature of 23.9 °C and a maximum temperature of 61.2 °C.

0 3 . 1

Show by calculation which reactant was in excess.

Use the data to calculate the experimental value for enthalpy of reaction in kJ mol⁻¹(Assume that the specific heat capacity of the solution is 4.18 J K⁻¹g⁻¹and the density of the solution is 1.00 g cm⁻³).

Example Exam Q - 2017 AS Paper 1

Question	Marking Guidance	Mark	Additional Comments/Guidance
03.1	M1 Amount ZnSO ₄ = 1.0 x ⁵⁰ / ₁₀₀₀ mol or Amount ZnSO ₄ =0.050 mol	1	Mark M1 and M2 independently
	M2 Amount Mg = 2.08/ _{24.3} mol or Amount Mg= 0.0856 mol	1	
	(Hence Mg in excess)		
	M3 Q=mc∆T	1	M3 could be scored in M4
	M4 Q=50.0 x 4.18 x 37.3 or Q=7795.7J	1	If an error in M4, lose M4 and M5 and only award M6 for correct use of their incorrect M4 and division by their correct limiting reagent
	M5 (Energy released per mole) =7.796/0.05kJmol ⁻¹ or 7796/0.05 Jmol ⁻¹	1	M5 division by their limiting reagent
	M6 Δ <i>H</i> = – 156 kJmol ⁻¹	1	